Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 14(1): 5385, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443419

RESUMO

Alzheimer's disease (AD) is the most common type of dementia with millions of affected patients worldwide. Currently, there is still no cure and AD is often diagnosed long time after onset because there is no clear diagnosis. Thus, it is essential to study the physiology and pathogenesis of AD, investigating the risk factors that could be strongly connected to the disease onset. Despite AD, like other complex diseases, is the result of the combination of several factors, there is emerging agreement that environmental pollution should play a pivotal role in the causes of disease. In this work, we implemented an Artificial Intelligence model to predict AD mortality, expressed as Standardized Mortality Ratio, at Italian provincial level over 5 years. We employed a set of publicly available variables concerning pollution, health, society and economy to feed a Random Forest algorithm. Using methods based on eXplainable Artificial Intelligence (XAI) we found that air pollution (mainly O 3 and N O 2 ) contribute the most to AD mortality prediction. These results could help to shed light on the etiology of Alzheimer's disease and to confirm the urgent need to further investigate the relationship between the environment and the disease.


Assuntos
Doença de Alzheimer , Poluentes Ambientais , Humanos , Inteligência Artificial , Doença de Alzheimer/etiologia , Aprendizado de Máquina , Poluição Ambiental
2.
Front Microbiol ; 15: 1348974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426064

RESUMO

Background: Colorectal cancer (CRC) is a type of tumor caused by the uncontrolled growth of cells in the mucosa lining the last part of the intestine. Emerging evidence underscores an association between CRC and gut microbiome dysbiosis. The high mortality rate of this cancer has made it necessary to develop new early diagnostic methods. Machine learning (ML) techniques can represent a solution to evaluate the interaction between intestinal microbiota and host physiology. Through explained artificial intelligence (XAI) it is possible to evaluate the individual contributions of microbial taxonomic markers for each subject. Our work also implements the Shapley Method Additive Explanations (SHAP) algorithm to identify for each subject which parameters are important in the context of CRC. Results: The proposed study aimed to implement an explainable artificial intelligence framework using both gut microbiota data and demographic information from subjects to classify a cohort of control subjects from those with CRC. Our analysis revealed an association between gut microbiota and this disease. We compared three machine learning algorithms, and the Random Forest (RF) algorithm emerged as the best classifier, with a precision of 0.729 ± 0.038 and an area under the Precision-Recall curve of 0.668 ± 0.016. Additionally, SHAP analysis highlighted the most crucial variables in the model's decision-making, facilitating the identification of specific bacteria linked to CRC. Our results confirmed the role of certain bacteria, such as Fusobacterium, Peptostreptococcus, and Parvimonas, whose abundance appears notably associated with the disease, as well as bacteria whose presence is linked to a non-diseased state. Discussion: These findings emphasizes the potential of leveraging gut microbiota data within an explainable AI framework for CRC classification. The significant association observed aligns with existing knowledge. The precision exhibited by the RF algorithm reinforces its suitability for such classification tasks. The SHAP analysis not only enhanced interpretability but identified specific bacteria crucial in CRC determination. This approach opens avenues for targeted interventions based on microbial signatures. Further exploration is warranted to deepen our understanding of the intricate interplay between microbiota and health, providing insights for refined diagnostic and therapeutic strategies.

3.
Front Microbiol ; 15: 1341152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410386

RESUMO

The presented study protocol outlines a comprehensive investigation into the interplay among the human microbiota, volatilome, and disease biomarkers, with a specific focus on Behçet's disease (BD) using methods based on explainable artificial intelligence. The protocol is structured in three phases. During the initial three-month clinical study, participants will be divided into control and experimental groups. The experimental groups will receive a soluble fiber-based dietary supplement alongside standard therapy. Data collection will encompass oral and fecal microbiota, breath samples, clinical characteristics, laboratory parameters, and dietary habits. The subsequent biological data analysis will involve gas chromatography, mass spectrometry, and metagenetic analysis to examine the volatilome and microbiota composition of salivary and fecal samples. Additionally, chemical characterization of breath samples will be performed. The third phase introduces Explainable Artificial Intelligence (XAI) for the analysis of the collected data. This novel approach aims to evaluate eubiosis and dysbiosis conditions, identify markers associated with BD, dietary habits, and the supplement. Primary objectives include establishing correlations between microbiota, volatilome, phenotypic BD characteristics, and identifying patient groups with shared features. The study aims to identify taxonomic units and metabolic markers predicting clinical outcomes, assess the supplement's impact, and investigate the relationship between dietary habits and patient outcomes. This protocol contributes to understanding the microbiome's role in health and disease and pioneers an XAI-driven approach for personalized BD management. With 70 recruited BD patients, XAI algorithms will analyze multi-modal clinical data, potentially revolutionizing BD management and paving the way for improved patient outcomes.

4.
Cell Rep Med ; 5(1): 101350, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38134931

RESUMO

Every year, 11% of infants are born preterm with significant health consequences, with the vaginal microbiome a risk factor for preterm birth. We crowdsource models to predict (1) preterm birth (PTB; <37 weeks) or (2) early preterm birth (ePTB; <32 weeks) from 9 vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from public raw data via phylogenetic harmonization. The predictive models are validated on two independent unpublished datasets representing 331 samples from 148 pregnant individuals. The top-performing models (among 148 and 121 submissions from 318 teams) achieve area under the receiver operator characteristic (AUROC) curve scores of 0.69 and 0.87 predicting PTB and ePTB, respectively. Alpha diversity, VALENCIA community state types, and composition are important features in the top-performing models, most of which are tree-based methods. This work is a model for translation of microbiome data into clinically relevant predictive models and to better understand preterm birth.


Assuntos
Crowdsourcing , Microbiota , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Filogenia , Vagina , Microbiota/genética
5.
Sci Rep ; 13(1): 19645, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950034

RESUMO

Correlation Plenoptic Imaging (CPI) is a novel volumetric imaging technique that uses two sensors and the spatio-temporal correlations of light to detect both the spatial distribution and the direction of light. This novel approach to plenoptic imaging enables refocusing and 3D imaging with significant enhancement of both resolution and depth of field. However, CPI is generally slower than conventional approaches due to the need to acquire sufficient statistics for measuring correlations with an acceptable signal-to-noise ratio (SNR). We address this issue by implementing a Deep Learning application to improve image quality with undersampled frame statistics. We employ a set of experimental images reconstructed by a standard CPI architecture, at three different sampling ratios, and use it to feed a CNN model pre-trained through the transfer learning paradigm U-Net architecture with VGG-19 net for the encoding part. We find that our model reaches a Structural Similarity (SSIM) index value close to 1 both for the test sample (SSIM = [Formula: see text]) and in 5-fold cross validation (SSIM = [Formula: see text]); the results are also shown to outperform classic denoising methods, in particular for images with lower SNR. The proposed work represents the first application of Artificial Intelligence in the field of CPI and demonstrates its high potential: speeding-up the acquisition by a factor 20 over the fastest CPI so far demonstrated, enabling recording potentially 200 volumetric images per second. The presented results open the way to scanning-free real-time volumetric imaging at video rate, which is expected to achieve a substantial influence in various applications scenarios, from monitoring neuronal activity to machine vision and security.

6.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894965

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the number of cases is constantly increasing. Early and accurate HCC diagnosis is crucial to improving the effectiveness of treatment. The aim of the study is to develop a supervised learning framework based on hierarchical community detection and artificial intelligence in order to classify patients and controls using publicly available microarray data. With our methodology, we identified 20 gene communities that discriminated between healthy and cancerous samples, with an accuracy exceeding 90%. We validated the performance of these communities on an independent dataset, and with two of them, we reached an accuracy exceeding 80%. Then, we focused on two communities, selected because they were enriched with relevant biological functions, and on these we applied an explainable artificial intelligence (XAI) approach to analyze the contribution of each gene to the classification task. In conclusion, the proposed framework provides an effective methodological and quantitative tool helping to find gene communities, which may uncover pivotal mechanisms responsible for HCC and thus discover new biomarkers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Inteligência Artificial , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Marcadores Genéticos , Nível de Saúde
7.
Sci Rep ; 13(1): 16590, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789191

RESUMO

Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample.


Assuntos
Inteligência Artificial , Neoplasias da Glândula Tireoide , Humanos , Diagnóstico Diferencial , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Algoritmos , Análise Espectral Raman/métodos
8.
Front Microbiol ; 14: 1261889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808286

RESUMO

Microbiome data predictive analysis within a machine learning (ML) workflow presents numerous domain-specific challenges involving preprocessing, feature selection, predictive modeling, performance estimation, model interpretation, and the extraction of biological information from the results. To assist decision-making, we offer a set of recommendations on algorithm selection, pipeline creation and evaluation, stemming from the COST Action ML4Microbiome. We compared the suggested approaches on a multi-cohort shotgun metagenomics dataset of colorectal cancer patients, focusing on their performance in disease diagnosis and biomarker discovery. It is demonstrated that the use of compositional transformations and filtering methods as part of data preprocessing does not always improve the predictive performance of a model. In contrast, the multivariate feature selection, such as the Statistically Equivalent Signatures algorithm, was effective in reducing the classification error. When validated on a separate test dataset, this algorithm in combination with random forest modeling, provided the most accurate performance estimates. Lastly, we showed how linear modeling by logistic regression coupled with visualization techniques such as Individual Conditional Expectation (ICE) plots can yield interpretable results and offer biological insights. These findings are significant for clinicians and non-experts alike in translational applications.

9.
Front Aging Neurosci ; 15: 1238065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719873

RESUMO

The advent of eXplainable Artificial Intelligence (XAI) has revolutionized the way human experts, especially from non-computational domains, approach artificial intelligence; this is particularly true for clinical applications where the transparency of the results is often compromised by the algorithmic complexity. Here, we investigate how Alzheimer's disease (AD) affects brain connectivity within a cohort of 432 subjects whose T1 brain Magnetic Resonance Imaging data (MRI) were acquired within the Alzheimer's Disease Neuroimaging Initiative (ADNI). In particular, the cohort included 92 patients with AD, 126 normal controls (NC) and 214 subjects with mild cognitive impairment (MCI). We show how graph theory-based models can accurately distinguish these clinical conditions and how Shapley values, borrowed from game theory, can be adopted to make these models intelligible and easy to interpret. Explainability analyses outline the role played by regions like putamen, middle and superior temporal gyrus; from a class-related perspective, it is possible to outline specific regions, such as hippocampus and amygdala for AD and posterior cingulate and precuneus for MCI. The approach is general and could be adopted to outline how brain connectivity affects specific brain regions.

10.
Sci Data ; 10(1): 564, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626087

RESUMO

Dementia is on the rise in the world population and has been defined by the World Health Organization as a global public health priority. In Italy, according to demographic projections, in 2051 there will be 280 elderly people for every 100 young people, with an increase in all age-related chronic diseases, including dementia. Currently the total number of patients with dementia is estimated to be over 1 million (mainly with Alzheimer's disease (AD) and Parkinson's disease (PD)). In-depth studies of the etiology and physiology of dementia are complicated due to the complexity of these diseases and their long duration. In this work we present a dataset on mortality rates (in the form of Standardized Mortality Ratios, SMR) for AD e PD in Italy at provincial level over a period of 8 years (2012-2019). Access to long-term, spatially detailed and ready-to-use data could favor both health monitoring and the research of new treatments and new drugs as well as innovative methodologies for early diagnosis of dementia.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Adolescente , Idoso , Humanos , Doença de Alzheimer/mortalidade , Itália/epidemiologia , Doença de Parkinson/mortalidade , Saúde Pública , Organização Mundial da Saúde
11.
medRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945505

RESUMO

Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth.

12.
Front Big Data ; 5: 1027783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567754

RESUMO

Introduction: Dementia is an umbrella term indicating a group of diseases that affect the cognitive sphere. Dementia is not a mere individual health issue, since its interference with the ability to carry out daily activities entails a series of collateral problems, comprising exclusion of patients from civil rights and welfare, unpaid caregiving work, mostly performed by women, and an additional burden on the public healthcare systems. Thus, gender and wealth inequalities (both among individuals and among countries) tend to amplify the social impact of such a disease. Since at present there is no cure for dementia but only drug treatments to slow down its progress and mitigate the symptoms, it is essential to work on prevention and early diagnosis, identifying the risk factors that increase the probability of its onset. The complex and multifactorial etiology of dementia, resulting from an interplay between genetics and environmental factors, can benefit from a multidisciplinary approach that follows the "One Health" guidelines of the World Health Organization. Methods: In this work, we apply methods of Artificial Intelligence and complex systems physics to investigate the possibility to predict dementia prevalence throughout world countries from a set of variables concerning individual health, food consumption, substance use and abuse, healthcare system efficiency. The analysis uses publicly available indicator values at a country level, referred to a time window of 26 years. Results: Employing methods based on eXplainable Artificial Intelligence (XAI) and complex networks, we identify a group of lifestyle factors, mostly concerning nutrition, that contribute the most to dementia incidence prediction. Discussion: The proposed approach provides a methodological basis to develop quantitative tools for action patterns against such a disease, which involves issues deeply related with sustainable, such as good health and resposible food consumption.

13.
Front Neurosci ; 16: 1012287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300169

RESUMO

Radiomics is a challenging development area in imaging field that is greatly capturing interest of radiologists and neuroscientists. However, radiomics features show a strong non-biological variability determined by different facilities and imaging protocols, limiting the reproducibility and generalizability of analysis frameworks. Our study aimed to investigate the usefulness of harmonization to reduce site-effects on radiomics features over specific brain regions. We selected T1-weighted magnetic resonance imaging (MRI) by using the MRI dataset Parkinson's Progression Markers Initiative (PPMI) from different sites with healthy controls (HC) and Parkinson's disease (PD) patients. First, the investigation of radiomics measure discrepancies were assessed on healthy brain regions-of-interest (ROIs) via a classification pipeline based on LASSO feature selection and support vector machine (SVM) model. Then, a ComBat-based harmonization approach was applied to correct site-effects. Finally, a validation step on PD subjects evaluated diagnostic accuracy before and after harmonization of radiomics data. Results on healthy subjects demonstrated a dependence from site-effects that could be corrected with ComBat harmonization. LASSO regressor after harmonization was unable to select any feature to distinguish controls by site. Moreover, harmonized radiomics features achieved an area under the receiving operating characteristic curve (AUC) of 0.77 (compared to AUC of 0.71 for raw radiomics measures) in distinguish Parkinson's patients from HC. We found a not-negligible site-effect studying radiomics of HC pre- and post-harmonization of features. Our validation study on PD patients demonstrated a significant influence of non-biological noise source in diagnostic performances. Finally, harmonization of multicenter radiomic data represent a necessary step to make analysis pipelines reliable and replicable for multisite neuroimaging studies.

14.
Sci Rep ; 12(1): 16349, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175583

RESUMO

The impacts and threats posed by wildfires are dramatically increasing due to climate change. In recent years, the wildfire community has attempted to estimate wildfire occurrence with machine learning models. However, to fully exploit the potential of these models, it is of paramount importance to make their predictions interpretable and intelligible. This study is a first attempt to provide an eXplainable artificial intelligence (XAI) framework for estimating wildfire occurrence using a Random Forest model with Shapley values for interpretation. Our findings accurately detected regions with a high presence of wildfires (area under the curve 81.3%) and outlined the drivers empowering occurrence, such as the Fire Weather Index and Normalized Difference Vegetation Index. Furthermore, our analysis suggests the presence of anomalous hotspots. In contexts where human and natural spheres constantly intermingle and interact, the XAI framework, suitably integrated into decision support systems, could support forest managers to prevent and mitigate future wildfire disasters and develop strategies for effective fire management, response, recovery, and resilience.


Assuntos
Incêndios , Incêndios Florestais , Inteligência Artificial , Europa (Continente) , Humanos , Aprendizado de Máquina
15.
Front Immunol ; 13: 917939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833126

RESUMO

Background: Psoriatic Arthritis (PsA) is a multifactorial disease, and predicting remission is challenging. Machine learning (ML) is a promising tool for building multi-parametric models to predict clinical outcomes. We aimed at developing a ML algorithm to predict the probability of remission in PsA patients on treatment with Secukinumab (SEC). Methods: PsA patients undergoing SEC treatment between September 2017 and September 2020 were retrospectively analyzed. At baseline and 12-month follow-up, we retrieved demographic and clinical characteristics, including Body Mass Index (BMI), disease phenotypes, Disease Activity in PsA (DAPSA), Leeds Enthesitis Index (LEI) and presence/absence of comorbidities, including fibromyalgia and metabolic syndrome. Two random feature elimination wrappers, based on an eXtreme Gradient Boosting (XGBoost) and Logistic Regression (LR), were trained and validated with 10-fold cross-validation for predicting 12-month DAPSA remission with an attribute core set with the least number of predictors. The performance of each algorithm was assessed in terms of accuracy, precision, recall and area under receiver operating characteristic curve (AUROC). Results: One-hundred-nineteen patients were selected. At 12 months, 20 out of 119 patients (25.21%) achieved DAPSA remission. Accuracy and AUROC of XGBoost was of 0.97 ± 0.06 and 0.97 ± 0.07, overtaking LR (accuracy 0.73 ± 0.09, AUROC 0.78 ± 0.14). Baseline DAPSA, fibromyalgia and axial disease were the most important attributes for the algorithm and were negatively associated with 12-month DAPSA remission. Conclusions: A ML approach may identify SEC good responders. Patients with a high disease burden and axial disease with comorbid fibromyalgia seem challenging to treat.


Assuntos
Artrite Psoriásica , Fibromialgia , Anticorpos Monoclonais Humanizados , Artrite Psoriásica/complicações , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/tratamento farmacológico , Fibromialgia/complicações , Humanos , Aprendizado de Máquina , Estudos Retrospectivos , Índice de Gravidade de Doença , Resultado do Tratamento
16.
Brain Inform ; 9(1): 17, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882684

RESUMO

In clinical practice, several standardized neuropsychological tests have been designed to assess and monitor the neurocognitive status of patients with neurodegenerative diseases such as Alzheimer's disease. Important research efforts have been devoted so far to the development of multivariate machine learning models that combine the different test indexes to predict the diagnosis and prognosis of cognitive decline with remarkable results. However, less attention has been devoted to the explainability of these models. In this work, we present a robust framework to (i) perform a threefold classification between healthy control subjects, individuals with cognitive impairment, and subjects with dementia using different cognitive indexes and (ii) analyze the variability of the explainability SHAP values associated with the decisions taken by the predictive models. We demonstrate that the SHAP values can accurately characterize how each index affects a patient's cognitive status. Furthermore, we show that a longitudinal analysis of SHAP values can provide effective information on Alzheimer's disease progression.

17.
J Pers Med ; 12(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893293

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect different organs and has extremely heterogenous presentations. This complexity makes it difficult to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a personalized approach in clinical practice. In this context, machine learning (ML), a branch of artificial intelligence (AI), is able to recognize relationships in data and predict outcomes. METHODS: Here, we performed a narrative review concerning the application of ML in SSc to define the state of art and evaluate its role in a precision medicine context. RESULTS: Currently, ML has been used to stratify SSc patients and identify those at high risk of severe complications. Additionally, ML may be useful in the early detection of organ involvement. Furthermore, ML might have a role in target therapy approach and in predicting drug response. CONCLUSION: Available evidence about the utility of ML in SSc is sparse but promising. Future improvements in this field could result in a big step toward precision medicine. Further research is needed to define ML application in clinical practice.

18.
Neuroimage Clin ; 35: 103082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35700598

RESUMO

Machine Learning (ML) techniques have been widely used in Neuroimaging studies of Autism Spectrum Disorders (ASD) both to identify possible brain alterations related to this condition and to evaluate the predictive power of brain imaging modalities. The collection and public sharing of large imaging samples has favored an even greater diffusion of the use of ML-based analyses. However, multi-center data collections may suffer the batch effect, which, especially in case of Magnetic Resonance Imaging (MRI) studies, should be curated to avoid confounding effects for ML classifiers and masking biases. This is particularly important in the study of barely separable populations according to MRI data, such as subjects with ASD compared to controls with typical development (TD). Here, we show how the implementation of a harmo- nization protocol on brain structural features unlocks the case-control ML separation capability in the analysis of a multi-center MRI dataset. This effect is demonstrated on the ABIDE data collection, involving subjects encompassing a wide age range. After data harmonization, the overall ASD vs. TD discrimination capability by a Random Forest (RF) classifier improves from a very low performance (AUC = 0.58 ± 0.04) to a still low, but reasonably significant AUC = 0.67 ± 0.03. The performances of the RF classifier have been evaluated also in the age-specific subgroups of children, adolescents and adults, obtaining AUC = 0.62 ± 0.02, AUC = 0.65 ± 0.03 and AUC = 0.69 ± 0.06, respectively. Specific and consistent patterns of anatomical differences related to the ASD condition have been identified for the three different age subgroups.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neuroimagem
19.
Genes (Basel) ; 13(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35627112

RESUMO

The increased incidence and the significant health burden associated with Parkinson's disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is often diagnosed a long time after onset when irreversible damage has already occurred. Blood transcriptomics represents a potentially disruptive technology for the early diagnosis of PD. We used transcriptome data from the PPMI study, a large cohort study with early PD subjects and age matched controls (HC), to perform the classification of PD vs. HC in around 550 samples. Using a nested feature selection procedure based on Random Forests and XGBoost we reached an AUC of 72% and found 493 candidate genes. We further discussed the importance of the selected genes through a functional analysis based on GOs and KEGG pathways.


Assuntos
Doença de Parkinson , Estudos de Coortes , Diagnóstico Precoce , Humanos , Aprendizado de Máquina , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Transcriptoma/genética
20.
Front Immunol ; 13: 860877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450069

RESUMO

Background: Inferential statistical methods failed in identifying reliable biomarkers and risk factors for relapsing giant cell arteritis (GCA) after glucocorticoids (GCs) tapering. A ML approach allows to handle complex non-linear relationships between patient attributes that are hard to model with traditional statistical methods, merging them to output a forecast or a probability for a given outcome. Objective: The objective of the study was to assess whether ML algorithms can predict GCA relapse after GCs tapering. Methods: GCA patients who underwent GCs therapy and regular follow-up visits for at least 12 months, were retrospectively analyzed and used for implementing 3 ML algorithms, namely, Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF). The outcome of interest was disease relapse within 3 months during GCs tapering. After a ML variable selection method, based on a XGBoost wrapper, an attribute core set was used to train and test each algorithm using 5-fold cross-validation. The performance of each algorithm in both phases was assessed in terms of accuracy and area under receiver operating characteristic curve (AUROC). Results: The dataset consisted of 107 GCA patients (73 women, 68.2%) with mean age ( ± SD) 74.1 ( ± 8.5) years at presentation. GCA flare occurred in 40/107 patients (37.4%) within 3 months after GCs tapering. As a result of ML wrapper, the attribute core set with the least number of variables used for algorithm training included presence/absence of diabetes mellitus and concomitant polymyalgia rheumatica as well as erythrocyte sedimentation rate level at GCs baseline. RF showed the best performance, being significantly superior to other algorithms in accuracy (RF 71.4% vs LR 70.4% vs DT 62.9%). Consistently, RF precision (72.1%) was significantly greater than those of LR (62.6%) and DT (50.8%). Conversely, LR was superior to RF and DT in recall (RF 60% vs LR 62.5% vs DT 47.5%). Moreover, RF AUROC (0.76) was more significant compared to LR (0.73) and DT (0.65). Conclusions: RF algorithm can predict GCA relapse after GCs tapering with sufficient accuracy. To date, this is one of the most accurate predictive modelings for such outcome. This ML method represents a reproducible tool, capable of supporting clinicians in GCA patient management.


Assuntos
Arterite de Células Gigantes , Idoso , Idoso de 80 Anos ou mais , Feminino , Arterite de Células Gigantes/diagnóstico , Arterite de Células Gigantes/tratamento farmacológico , Glucocorticoides/uso terapêutico , Humanos , Aprendizado de Máquina , Masculino , Recidiva , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...